Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.

Identifieur interne : 003756 ( Main/Exploration ); précédent : 003755; suivant : 003757

Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.

Auteurs : Timothy E. Gookin [États-Unis] ; Junhyong Kim ; Sarah M. Assmann

Source :

RBID : pubmed:18671868

Descripteurs français

English descriptors

Abstract

BACKGROUND

The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular G alpha subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs.

RESULTS

Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole G alpha in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans.

CONCLUSION

Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.


DOI: 10.1186/gb-2008-9-7-r120
PubMed: 18671868
PubMed Central: PMC2530877


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.</title>
<author>
<name sortKey="Gookin, Timothy E" sort="Gookin, Timothy E" uniqKey="Gookin T" first="Timothy E" last="Gookin">Timothy E. Gookin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA. tegookin@psu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Junhyong" sort="Kim, Junhyong" uniqKey="Kim J" first="Junhyong" last="Kim">Junhyong Kim</name>
</author>
<author>
<name sortKey="Assmann, Sarah M" sort="Assmann, Sarah M" uniqKey="Assmann S" first="Sarah M" last="Assmann">Sarah M. Assmann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18671868</idno>
<idno type="pmid">18671868</idno>
<idno type="doi">10.1186/gb-2008-9-7-r120</idno>
<idno type="pmc">PMC2530877</idno>
<idno type="wicri:Area/Main/Corpus">003829</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003829</idno>
<idno type="wicri:Area/Main/Curation">003829</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003829</idno>
<idno type="wicri:Area/Main/Exploration">003829</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.</title>
<author>
<name sortKey="Gookin, Timothy E" sort="Gookin, Timothy E" uniqKey="Gookin T" first="Timothy E" last="Gookin">Timothy E. Gookin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA. tegookin@psu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Junhyong" sort="Kim, Junhyong" uniqKey="Kim J" first="Junhyong" last="Kim">Junhyong Kim</name>
</author>
<author>
<name sortKey="Assmann, Sarah M" sort="Assmann, Sarah M" uniqKey="Assmann S" first="Sarah M" last="Assmann">Sarah M. Assmann</name>
</author>
</analytic>
<series>
<title level="j">Genome biology</title>
<idno type="eISSN">1474-760X</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (classification)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Computational Biology (methods)</term>
<term>GTP-Binding Protein alpha Subunits (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Proteome (chemistry)</term>
<term>Receptors, G-Protein-Coupled (chemistry)</term>
<term>Receptors, G-Protein-Coupled (classification)</term>
<term>Receptors, G-Protein-Coupled (metabolism)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence de protéine (MeSH)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Biologie informatique (méthodes)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Oryza (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines d'Arabidopsis (classification)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (composition chimique)</term>
<term>Récepteurs couplés aux protéines G (classification)</term>
<term>Récepteurs couplés aux protéines G (composition chimique)</term>
<term>Récepteurs couplés aux protéines G (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sous-unités alpha des protéines G (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
<term>Proteome</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Protéome</term>
<term>Récepteurs couplés aux protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>GTP-Binding Protein alpha Subunits</term>
<term>Oryza</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Receptors, G-Protein-Coupled</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Récepteurs couplés aux protéines G</term>
<term>Sous-unités alpha des protéines G</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Analysis, Protein</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence de protéine</term>
<term>Données de séquences moléculaires</term>
<term>Phylogenèse</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular G alpha subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole G alpha in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18671868</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-760X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2008</Year>
</PubDate>
</JournalIssue>
<Title>Genome biology</Title>
<ISOAbbreviation>Genome Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.</ArticleTitle>
<Pagination>
<MedlinePgn>R120</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/gb-2008-9-7-r120</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular G alpha subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole G alpha in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gookin</LastName>
<ForeName>Timothy E</ForeName>
<Initials>TE</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA. tegookin@psu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Junhyong</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Assmann</LastName>
<ForeName>Sarah M</ForeName>
<Initials>SM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>07</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol</MedlineTA>
<NlmUniqueID>100960660</NlmUniqueID>
<ISSNLinking>1474-7596</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044385">GTP-Binding Protein alpha Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D043562">Receptors, G-Protein-Coupled</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044385" MajorTopicYN="N">GTP-Binding Protein alpha Subunits</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043562" MajorTopicYN="N">Receptors, G-Protein-Coupled</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18671868</ArticleId>
<ArticleId IdType="pii">gb-2008-9-7-r120</ArticleId>
<ArticleId IdType="doi">10.1186/gb-2008-9-7-r120</ArticleId>
<ArticleId IdType="pmc">PMC2530877</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neuron. 1999 Feb;22(2):327-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 1999 Oct;79(4):1373-430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Dec;5(12):998-1012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15573137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Dec 24;5:208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Mar;62(5):551-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15747061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2005 May;67(5):1414-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Dec;52(6):1001-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17894782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Senses. 2008 Jan;33(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 2008 Mar;133(1-3):28-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;448:109-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18370233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Jun;71(4):1919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18175323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Nov 1;239(2):333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10548735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1999 Dec;12(12):1087-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 2000 Feb;21(1):90-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10696571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Mar 10;287(5459):1830-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10710312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Aug 18;275(1):69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10944443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Sep;16(9):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2005 Jun;18(6):295-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15932905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16091152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 7;310(5745):71-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Aug;31(8):1733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16225690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Nov 15;21(22):4101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16174684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Dec 23;338(3):1542-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16274668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Dec;56(422):3137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Mar;15(3):509-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 7;313(5783):62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16825562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2006 Nov;19(11):511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invert Neurosci. 2006 Dec;6(4):189-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(10):R96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17064408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 23;315(5819):1712-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17347412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 May 1;392(1-2):14-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17196770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1590-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:249-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17201690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1235-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(4):656-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 14;282(37):27126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 5;318(5847):113-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Oct 23;17(20):1809-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11121078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Jul;17(7):646-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):854-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Aug 30;1520(2):147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2001 Sep;48(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11519072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Aug;42(8):789-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11522903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2001 Jul-Aug;92(4):371-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11535656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Sep;17(9):849-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11590105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Mar;76(5):2491-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4736-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11930019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2002 Jul;132(1):7-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12097154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):402-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Pharmacol. 2002 Jul;89(3):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Oct 4;298(5591):176-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12364795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Dec;18(12):1562-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 1;31(1):294-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12520006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):16-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Sep 19;301(5640):1728-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):571-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2004 Feb;16(2):175-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2004 Jan;13(1):240-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14691239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Med. 2004;55:27-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14746508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2004 Apr;32(4):349-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Biol Chem. 2004 Feb;28(1):39-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15022640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 May 14;338(5):1027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 Jun;5(6):572-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1616-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W380-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2004 Aug 18;338(1):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15302402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14091-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15383669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Dec;7(6):719-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2004 Nov;32(Pt 5):851-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Aug;81(15):4851-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6589631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Aug 5;263(22):10836-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2839507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Mar 12;8(6):315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Oct 23;283(2):489-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9769220</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Assmann, Sarah M" sort="Assmann, Sarah M" uniqKey="Assmann S" first="Sarah M" last="Assmann">Sarah M. Assmann</name>
<name sortKey="Kim, Junhyong" sort="Kim, Junhyong" uniqKey="Kim J" first="Junhyong" last="Kim">Junhyong Kim</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Gookin, Timothy E" sort="Gookin, Timothy E" uniqKey="Gookin T" first="Timothy E" last="Gookin">Timothy E. Gookin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18671868
   |texte=   Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18671868" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020